

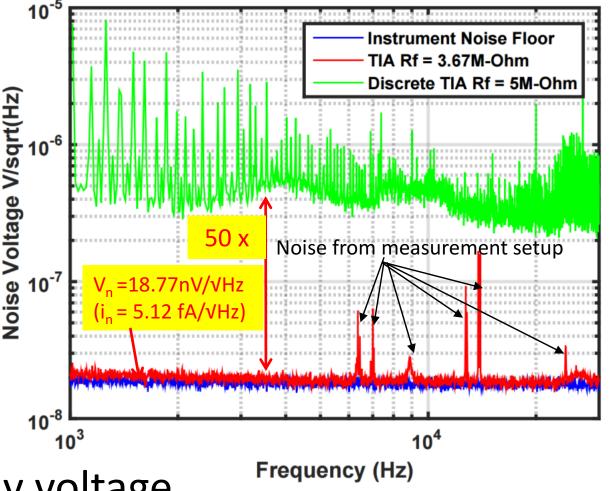
ULTRA-LOW-NOISE TRANSIMPEDANCE AMPLIFIER FOR HIGH-PERFORMANCE MEMS RESONANT GYROSCOPES

Jong-Kwan Woo, Christopher Boyd, Jae Yoong Cho, and Khalil Najafi Center for Wireless Integrated MicroSensing and Systems (WIMS²), **University of Michigan, Ann Arbor, Michigan, USA**

Motivation

- The performance of MEMS gyroscopes is rapidly approaching the level that can be adopted in a wide range of military and high-end industrial applications.
- One of the most highly desired applications for a high-performance gyroscope is GPS-free inertial navigation for autonomous cars, drones, and indoor pedestrians and it is required to have very high bias stability (< 0.1 deg/hr)

Accomplishments


- Implemented a new TIA that employs an on-chip digitally-controlled floating resistor as the variable resistor for a resistor T-network to lower the noise and obtain higher linearity.
- Measured very low input current noise (*i*_n=5.12fA/vHz) which translates to 0.45 zF/VHz minimum detectable capacitance and very wide dynamic range **(123 dB**).
- Demonstrated near-navigation-grade bias instability (0.0391 deg/hr).

Objective

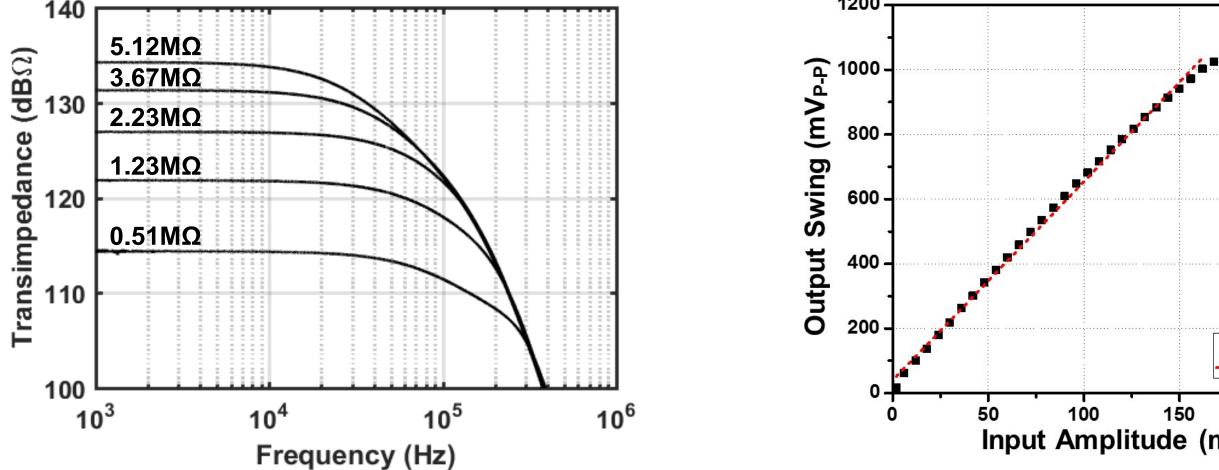
• Implementation of a front-end capacitive readout circuitry with extremely low noise, wide dynamic range, and high tolerance to variations in voltage and temperature to overcome the performance limits of existing gyroscopes.

Evaluation of Proposed CMOS TIA

Comparison between output noise

Implementation of a front-end capacitive readout circuitry with a wide feedback control range to detect a wide range of capacitances and frequencies

Challenges of Front-End Circuitry

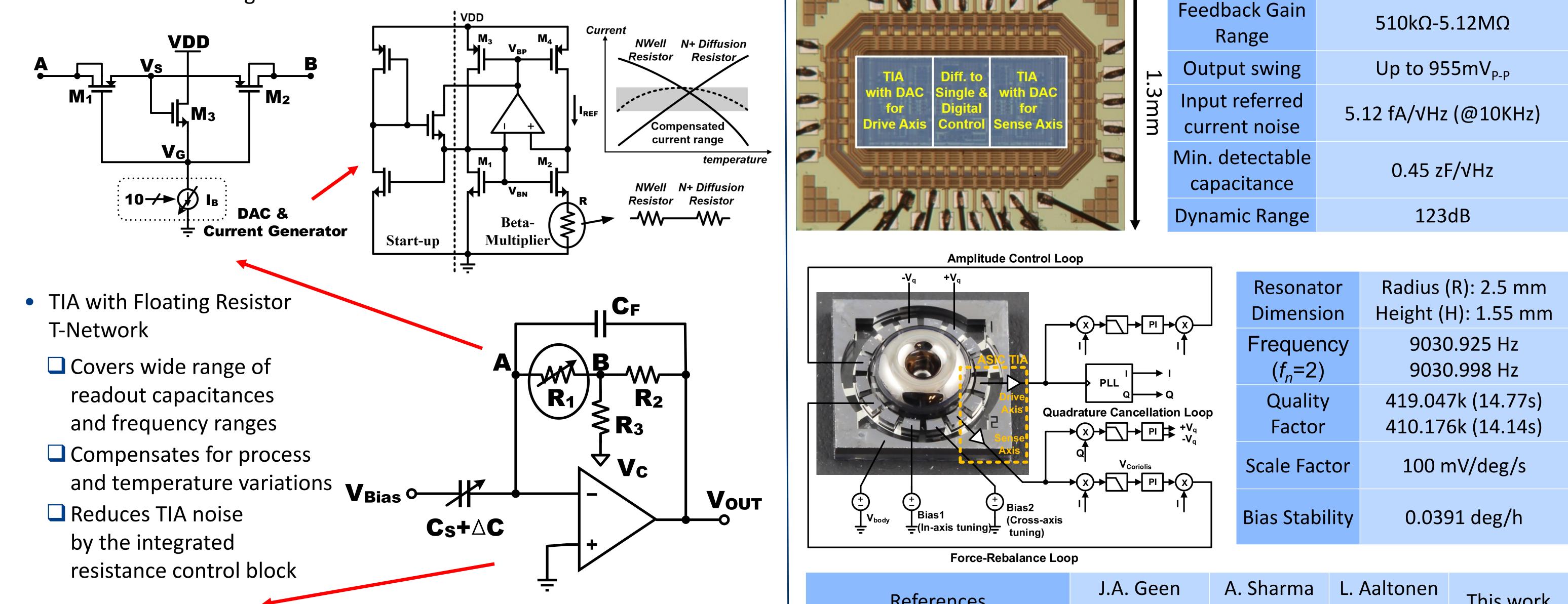

- Large output swing to cover a wide range of sensitivity
- Low distortion to get the high linearity
- Large and controllable feedback gain to cover a wide range of capacitances
- Easy on-chip integration to reduce parasitic

Trans-impedance Amplifier for Front-End

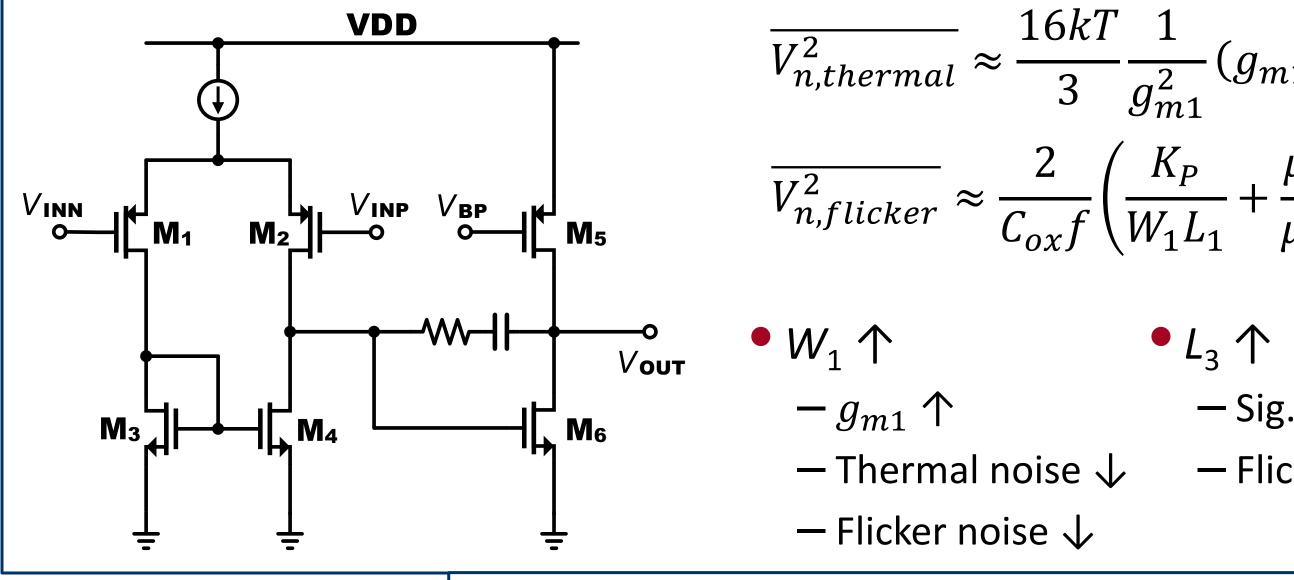
- Relatively insensitive to parasitic
- Two-chip cost effective solution
- Easy control of feedback gain
- Proof-mass not switched

spectral densities of TIA ASIC and discrete low-noise TIA (Right)

- □ ~50 times lower noise floor
- Measured T-network TIA gain (Lower Left)
 - Wide and controllable feedback gain
- Measured T-network TIA gain (Lower Right) 10⁻¹ **Large output swing even with low supply voltage**



Measured - - Fitted 200 Input Amplitude (mV_{P-P})


Entire Circuit Implementation

- Variable Floating Resistor with 10-b Current Steering DAC
- Voltage-Temperature tolerant Current Generator

Performance Summary and Comparison Results 1.7mm 0.18 μm 1P6M CMOS Technology

$\overline{V_{n,thermal}^2} \approx \frac{16kT}{3} \frac{1}{g}$	$\frac{1}{\frac{2}{m_1}}(g_{m_1}+g_{m_3})$
$\overline{V_{n,flicker}^2} \approx \frac{2}{C_{ox}f} \left(\frac{1}{N}\right)$	$\frac{K_P}{V_1 L_1} + \frac{\mu_n K_n L_1}{\mu_p W_1 L_3^2} \bigg)$
• $W_1 \uparrow$	• L ₃ ↑
$-g_{m1}$ \uparrow	— Sig. swing \downarrow
— Thermal noise \downarrow	— Flicker noise \downarrow

Center for Wireless Integrated MicroSensing & Systems

References	et al.	et al.	et al.	This work	
Front-End Architecture	CSA*	TIA	CSA*	TIA	
Input Current Noise (fA/vHz)	_	88	-	5.12	
Minimum Detectable Cap. (zF/√Hz)	12 (zF)	20**	220	0.45***	
Bias instability (deg/h)	50	0.16	25	0.0391	
*: Charge sense amplifier **: V _{Bias} =40V, <i>f</i> =15kHz ***: V _{Bias} =200V, <i>f</i> =9.03kHz					
 Summary and Future Work Demonstrated the fully integrated CMOS TIA with one-of-the lowest reported noise performance and very wide dynamic range. Demonstrated the rate-mode operation of FS μ-BRG with one-of-the-best performance among 					

existing MEMS gyroscopes. Acknowledgements DARPA MRIG Program (#W31P4Q-11-1-0002).

Will implement a miniaturized system with low-noise and high performance.

