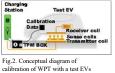
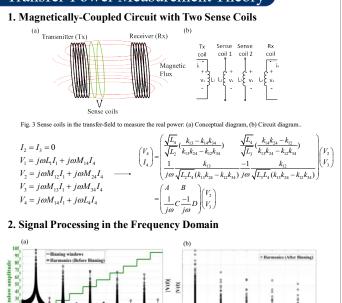
A Non-Contact Method for Fair and Accurate Metering of Wireless Power Transfer in Electric Vehicles


Sung Yul Chu and Al-Thaddeus Avestruz

sungyul@umich.edu

Motivation

- Wireless power transfer is emerging as the pre-eminent way to charge electric vehicles, but there appears to be no fair way to measure power transfer.
- Electrical terminal power measurement which is currently available cannot provide disaggregated efficiency between transmitter and receiver.
- In this paper, transfer-power measurement (TPM) is introduced. TPM employs non-contact sensing elements to measure magnetic field from wireless power transfer and calculate the real power propagating through space. TPM provides fair metering because individual losses from the transmitter and receiver are disaggregated. Signal and data processing as well as a calibration method are discussed. Experimental results demonstrate a fair method of metering the real transfer power with low estimation error.



by transfer-power measurement (TPM).

US Weights and Measures Program qualifies secured gas pump ring(left) with a seal (right). [Photo (left): Peter Casolino/New Haven ster "Connecticut gas station inspections show some pumps may be

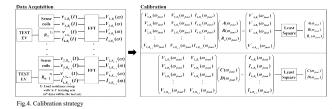

Transfer-Power Measurement Theory

Fig.3. An example of binning with respect to binning frequency windows


(a) Harmonics before binning (b) Harmonics after binning

3. Calibration

Results and Discussion

1. EV-sized Proof-of-Principle Experiments

TABLE 1. Specifications of Experiments				
Parameters	Value	Parameters	Value	
Transmitter coil Self-inductance,	146 µH	Tx and Rx coil Number of turns	11-turn	
Receiver coil Self-inductance,	145 µH	Sense coil Number of turns	l-turn	
Sense coil #1 Self-inductance,	2.6 µH	Transmitter coil Radius,	25 cm	
Sesse coil #2 Self-inductance,	2.6 µH	Receiver coil Radius,	25 cm	
Resonant Capcitance,	10 nF	Sense coil Radius,	24 cm	
Resonant Capcitance,	30 nF	Tx-Rx coil Distance,	21 cm	
Operating (Switching) Frequency	96 kHz	Vdc	50V	

MICHIGAN POWER & ENERGY LABORATORY

Fig.5. Proof-of-concept experiment

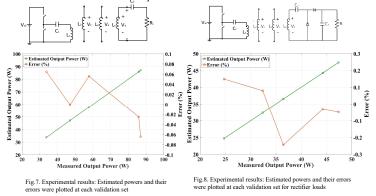
2. Experimental Results Power from terminal measurements deviate a lot from TPM.

- Transmitter and Receiver had disaggregated
- efficiency through TPM Experimental results

within target standards

(Metering Accuracy)

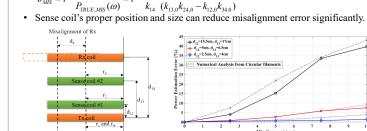
2. Experimental Comparison of TPM with Terminal Power Measurements.				
Resistance (R _L)	<u>P_{IN}:</u> Terminal Power Measurement at Tx (W)	E _{IRANSFER} : Transfer Power (W)	E _{OUT} : Terminal Power Measurement at Rx (W)	
5Ω	163.74	103.99	85.89	
10 Ω	133.24	97.15	86.98	
25 Ω	77.04	60.56	57.81	


TPM

TPM with rectifier loads are comparable

TABLE

Load F


50 Ω

3. Misalignment and Power Estimation Error

- Calibration is performed when Tx and Rx are perfectly aligned.
- Subsequent misalignment from vehicles results in errors in TPM
- TPM error due to misalignment only depends on the coupling coefficients. (k k (m)k -kk

$$\mathcal{E}_{MIS} = 1 - \frac{1}{P} \frac{1}{(\omega)} = 1 - \frac{1}{k} \frac{1}{(k_{13}\kappa_{24} - k_{12}\kappa_{34})}{(k_{13}\kappa_{24} - k_{12}\kappa_{34})}$$

Fig.10. Experimental results of power estimation error over misalign with different sense coil positions

Conclusion

Transfer-power measurement (TPM) was introduced and theoretically analyzed. Two non contact sense coils were employed to estimate the real transfer power. Signal processing in the frequency domain and a calibration strategy at the fundamental harmonic for accurate power estimation were addressed and verified by proof-of-principle experiments which showed TPM's strong capability to be an accurate and reliable method. Errors from misalignment were analyzed with respect to the size and position of the sense coils to improve the sensitivity of TPM.

S. Y. Chu and A. T. Avestruz, "Transfer-power measurement: A non-contact method for fair and accurate metering of wireless power transfer in electric vehicles," 2017 IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL), Stanford, CA, 2017, pp. 1-8.COMPEL.

Fig.9. Configurations of Tx, Rx, and sense coils

for misalignment analysis

Center for Wireless Integrated MicroSensing & Systems