
Si-Micromachined Knudsen Pumps for High Flow and Vacuum

Tsenguun Byambadorj, Qisen Cheng, Yutao Qin, Y.B. Gianchandani

<u>Summary:</u> This work presents two families of Knudsen pumps, one for high vacuum generation and the other for high flow generation. These pumps are based on thermal transpiration in narrow channels that have a thermal gradient. Gas is transported from the cold end to the hot end using free-molecular flow without any moving parts. The high-vacuum Knudsen pump uses surface-micromachined elements to form a cascade of 162 stages that are monolithically integrated. It can achieve a vacuum level of 0.9 Torr (0.12 kPa), and a compression ratio of 844. The high-flow Knudsen pump uses dense arrays of vertically oriented through-wafer channels to provide parallel pumping. At atmospheric pressure, it can provide a maximum measured air flow rate of >200 sccm with a response time of <0.5 sec. The high-flow Knudsen pumps are cascaded into multi-stage pumps using stacked and planar arrayed architectures to increase the output pressure head.

Publications:

[1] S. An, N.K. Gupta, Y.B. Gianchandani, "A Si-micromachined 162-stage two-part Knudsen pump for on-chip vacuum," *IEEE Journal of Microelectromechanical Systems*, vol. 23, no. 2, pp. 406-416, 2014.
[2] S. An, Y.B. Gianchandani, "A dynamic calibration method for Pirani gauges embedded in fluidic networks," *IEEE Journal of Microelectromechanical Systems*, vol. 23, no. 3, pp. 699-709, 2014.
[3] S. An, N.K. Gupta, Y.B. Gianchandani, "Vacuum sealing using atomic layer deposition of Al₂O₃ at 250°C," *AIP Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films*, vol. 31, no. 1, p. 01A101, 2014.
[4] S. An, Y. Qin, Y.B. Gianchandani, "A Monolithic High-Flow Knudsen Pump Using Vertical Al₂O₃ Channels in SOI," *IEEE Journal of Microelectromechanical Systems*, vol. 24, no. 5, pp. 1606-1615, 2015
[5] Y. Qin, S. An, Y.B. Gianchandani, "Arrayed architectures for multi-stage Si-micromachined high-flow Knudsen pumps," *IOP Journal of Microelectromechanics and Microengineering*, vol. 25, no. 11, 115026(10 pp.), 2015. (Featured on cover of issue)

UNIVERSITY OF MICHIGAN

Patent: Y.B. Gianchandani, S. An, Y. Qin, "Microfabricated Gas Flow Structure," US 15/006,034, patent pending

Acknowledgement: The authors would like to thank Dr. Seungdo An for his significant contributions to this work. The study was supported in part by the Microsystems Technology Office of the Defense Advanced Research Projects Agency High-Vacuum Program (DARPA Contract #W31P4Q-09-1-0011) and the Defense Threat Reduction Agency MGA MVP Program (DTRA Contract #HDTRA1-14-C-0011). Facilities used for this research included the Lurie Nanofabrication Facility (LNF) and the University of Michigan.

Center for Wireless Integrated MicroSensing & Systems