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Mo#va#on	
•  Develop	an	accurate	rota8on	sensor	which	fits	
					in	a	volume	of	10	mm3	

•  Applica8ons	
•  GPS-free	iner8al	naviga8on	
•  Ac8ve	vehicle	safety	systems	
•  Robo8cs	and	autonomous	vehicles	
•  Health	monitoring	systems	

•  Mechanical	damping	(Q)	determines	gyroscope	
fundamental	noise	floor		

•  Inherent	sensor	noise	from	fabrica8on	mismatch	
is	reduced	using	closed-loop	control		

•  Low-noise	interface	circuit	is	necessary	to	push	
accuracy	towards	theore8cal	limits	
	

	
	 Gyro	Characteriza#on	

	
𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 (𝑄)=𝜋𝑓𝜏	

Control	Approach	
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Low-Noise	Capaci8ve	Interface	Circuit	

Experimental	Results	
	Gyro	Bias	Instability		 Temperature	Sensi8vity	
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Force	Rebalance	Scale	
Factor	

MEMS	Gyro	Comparison	

•  Reduced	angle	random	walk	(ARW)	and	bias	
instability	aZributed	to	reduced	front-end	noise,	
mode	matching,	and	increased	quality	factor	

•  Future	work	will	compensate	for	long-term	dri[	
in	quality	factor	and	resonant	frequency	due	to	
temperature	dri[	and	structural	asymmetry	
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Drive	Mode	 Sense	Mode	

Reference	 This	Work	 [4]	 [5]	 [6]	
Bias		Instability	(𝑚

°⁄ℎ𝑟 )	 39	 12	 90	 100	

ARW	(𝑚°⁄√ℎ𝑟  )	 8.7	 2.3	 15	 15	
Quality	Factor	 450k	 80k	 1.6M	 50k	

𝑨𝑹𝑾 ≈ √𝑘↓𝐵 𝑇𝜔↓2 /𝑨↑𝟐 𝑴𝜔↓1↑2 𝑸↓𝟐  (1+ (∆𝝎)↑𝟐 /𝛾↑2  ) ×3437.7 °⁄√ℎ𝑟  	
Angle	Random	Walk	Equa8on		 Reference	 This	Work	 [1]	 [2]	 [3]	

Front-End	Architecture	 TIA	 TIA	 CSA	 CSA	
Input	Current	Noise	(𝑓𝐴⁄√𝐻𝑧  )	 5.12	 88	 -	 -	
Min.	detectable	∆𝐶	(𝑧𝐹/√𝐻𝑧 )		(𝑧𝐹/√𝐻𝑧 )	 0.45	 20	 220	 12	

Technology	(𝜇𝑚)	 0.18	 0.6	 0.35	 3	

∆𝒇≈𝟏𝟏.𝟏 𝑯𝒛 

∆𝒇≈𝟐.𝟗 𝒎𝑯𝒛 𝑸↓𝟏 ≈𝟒𝟓𝟔,𝟔𝟑𝟒  
𝑸↓𝟐 ≈𝟒𝟑𝟒,𝟑𝟓𝟑  

𝝉↓𝟐 ≈𝟏𝟓.𝟐𝟔 𝒔  
𝝉↓𝟏 ≈𝟏𝟔.𝟎𝟐 𝒔  

xd	=	8.92%		BI:	39	 °∕hr 	 16.6 mHz 

•  Scale factor independent of initial tuned Δf 
•  Reduction in zero rate output drift from            

temperature change and time-varying Δf 

Displacement (% gap) 

This	Work:	39	m 
°∕ℎ𝑟 	
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Frequency	Response	 Ring	Down	(Damping)	


