

A Wearable Microfabricated Gas Chromatography for Trace-Level Volatile Organic Compound Determinations

Junqi Wang,^{1,3} N. Nunovero,² W. Steinecker,⁴ E. T. Zellers^{1,2,3}

Department of ¹Chemistry, ²Environmental Health Sciences, ³Center for Wireless Integrated MicroSensing & Systems (WIMS²), University of Michigan, Ann Arbor, MI; 4VGC Chromatography, Dayton, OH

Goal

 Develop a wearable gas chromatographic micro-analytical system (µGC), referred to as a Personal Exposure Monitoring Microsystem (PEMM), for near-real-time recognition and quantification of individual volatile organic compounds (VOC) in moderately complex mixtures encountered in industrial working environments

Introduction to PEMM

- Currently, there is no direct-reading instrumentation capable of measuring personal exposures to the components of VOC mixtures
- PEMM is designed to autonomously measure worker exposures to 10-15 VOCs every 8-10 minutes for 8 hours with detection limits in the low-ppm to high-ppb air concentration range
- Key MEMS components of the core PEMM microsystem include:
 - DRIE-Si/Pyrex dual-cavity micro preconcentrator/focuser (µPCF) packed with the graphitized carbons Carbopack X and Carbopack B,
 - quantitative VOC capture in specified volatility window
 - Integrated resistive heaters for desorption; optional split injection
 - DRIE-Si/Pyrex segmented, zone-heated micro separation column (µSC) wall-coated with cross-linked PDMS
 - independent zone heating and power efficient separation
 - Si/Pyrex micro chemiresistor (µCR) array coated with monolayer protected gold nanoparticles (MPNs) for VOC quantitation and recognition
 - 10 sensors available, independent grounds, response patterns
- Other features of the PEMM prototype include:
 - Passive pre-trap to remove low-volatility interferences
 - On-board Helium canister for superior chromatographic performance and low maintenance; > 1,000 analyses
 - On-board PIC 32 + ARM microcontroller
 - configure operating parameters; execute sampling and analysis functions; communicate with raspberry PI
 - Web based graphical user interface

PEMM Concept

CR Array

→ Sampling flow

Fluidic Pathways in PEMM

Belt-Mounted PEMM µGC Prototype

Photographs of a) PEMM prototype with cover removed; b) microsystem components; c) PEMM on electronic balance (2.05 kg); and d) PEMM mounted on a belt.

System Performance

Linear Calibration and Unique Response Patterns

a) calibration curves based on peak heights; b) normalized response patterns for 4 compounds derived from the peak areas in a). Note: n-C7, n-heptane; BAC, butyl acetate; m-XYL, m-xylene; 1,2,4-TMB, 1,2,4-trimethylbenzene. EOE, HME, C8, TEG are acronyms for the nanoparticle functionalities.

Limits of Detection (LODs)

Compound	Limits of Detections* (ng)			
	EOE	C8	HME	TEG
n-C7	5.1	3.8	4.6	42
Toluene	4.5	3.1	2.0	18
Butyl acetate	2.8	1.9	1.1	12
m-xylene	3.8	2.4	1.9	18

* For reference, 2 ng LOD for toluene (HME) corresponds to ~110 ppb for a 5 mL air sample

21-VOC Separations

Chromatograms under optimal injection condition. All conditions: ~100 ppm of each VOC; 1-min sampling @5 mL/min; µPCF: 225° C for 40 sec; 2:1 split injection (6:3 mL/min); Temp program: 50 sec at 30 °C; 50 C/min to 125 °C; 16 sec hold. Note: benzene (BEN); trichloroethene (TCE); n-heptane (C7); 4-methyl-2-pentanone (MIBK); toluene (TOL); 2-hexanone (MBK); butyl acetate (BAC); ethylbenzene (ETB); m-xylene (m-XYL); 3-heptanone (3HEP); n-nonane (C9); α-pinene (PIN); cumene (CUM); propylbenz. (PPB); 1,2,4-trimethylbenene (TMB); n-decane (C10); d-limonene (LIM); nitrobenzene (NBZ); n-undecane (C11); trichlorobenene (TCB); n-dodecane (C12)

Mock Field Tests

Activities

- 0-5 min: No activities
- 5-20 min: Solvent transfer (beaker to beaker)
- 20-30 min: Solvent transfer (beaker to hot plate, 80° C)
- 30-40 min: Solvent transfer (beaker to
- 40-55 min: Solvent transfer (beaker to hot plate, 100°C)
- <u>55-60 min</u>: No activities ~20 × concentration range for 1 hour monitoring
- Good agreement among sensors, and with reference methods

Summary

- We have built the first battery powered, wearable µGC and have generated encouraging results
- Responses of µCR sensors are linear with concentration, LODs are in the low ng range for most sensors (~ high ppb air conc.), and array response patterns enhance vapor discrimination
- 21 VOC separations were achieved on 4 sensors within 3 min
- mock field tests demonstrate potential capability of PEMM for real setting multi-vapor determinations
- Retention time windowed PCA plots (not shown) facilitate overlapping peaks identifications

Analysis flow