Increased Blocking Voltage in Solution Processed MICHIGAN **ZTO HVTFTs through Drain Offset** ENGINEERING

UNIVERSITY of MICHIGAN

Christopher Allemang and R.L. (Becky) Peterson Electrical Engineering & Computer Science Department, University of Michigan, Ann Arbor

Amorphous Oxide Semiconductors for Power

Comparison of semiconductor properties (yellow = advantages of AOS)

Property (at 300K)	SiC	ZnO	AOS	GaN
Crystalline structure	wurtzite	wurtzite	amorphous	wurtzite
Bandgap (eV)	3.23 (D)	3.3 (D)	3.3 (D)	3.4 (D)
Relative dielectric constant	9.66	8.75	11.5-13.8	10.6
Electron mobility (cm ² /V-s)	< 900	226	10-30	5300
Breakdown e-field (kV/cm)	~ 1000	> 100-300**	*	2,600
Cost / process complexity	High	Low	Low	High

Offset electrical performance

Performance of 0 μm offset device

>
$$\mu_{\text{linear}} = 11.8 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$$

> $C_{\text{ox}} = 72.3 \text{ nF} \cdot \text{cm}^{-2}$
> $V_t = -0.4 \text{ V}$
> $I_{\text{on}}/I_{\text{off}} > 10^6$

Results and Discussions

*Little or no experimental data available; **Breakdown in poly-ZnO occurs along grain boundaries. Transparent amorphous oxide semiconductors

- AOS offers wide bandgap and large dielectric
- High quality films obtained through solution or vacuum deposition; no need for bulk crystals

> As drain offset length increases, on-current decreases and linear region in output curve becomes more prominent

- Increasing resistance with offset
 - Increasing offset length increases region without gate control

Electron Conc (/cm3)

Semiconduc

Gate Dielectri

References

[1] Y. Son, J. Li, and R. L. Peterson, ACS Appl. Mater. Interfaces 8, 23801 (2016). [2] Y. Gong and T. N. Jackson, 74th Device Res. Conf. 2016, 185 (2016). [3] J. Jeong, G. J. Lee, J. Kim, J.-H. Kim, and B. Choi, Semicond. Sci. Technol. 28, 025015 (2013). [4] H. Sunamura et al., Symp. VLSI Technology 2014. [5] W. Hu and R. L. Peterson, Appl. Phys. Lett. 104, 192105 (2014). [6] S.-E. Liu et al., IEEE Electron Device Lett. 32, 161 (2011).

- > Drain offset increases blocking voltage by improving electric field distribution but increases on-resistance
- > Future Goal: Better field control for higher blocking voltage and lower on-resistance

Acknowledgements

This work was supported by SPAWAR through DARPA Young Faculty Award N66001-14-1-4046. Any opinions, findings, conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of DARPA or SPAWAR. ≻Thanks to Mr. Rodrigo Cuba for LabVIEW coding.

