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Summary: We report the first miniaturized magnet-less RF electron trap for use in chip-scale atomic instruments. Chip scale atomic inertial measurement units (AIMUSs)
and chip scale atomic clocks (CSACs) require ultra high vacuum operating conditions. Passive pressure control (low leakage packaging and getters) does not provide a
long term solution for Helium intrusion. The atomic devices are sensitive to magnetic fields; thus low power active pumps that do not require magnets are desirable.
Typical ultra-high vacuum pumps use crossed magnetic fields to trap electrons and ionize gas. Instead, we investigate a chip-scale ion pump (~1 cm?3) that will utilize RF
electron trapping, stacked micromachined elements, and a triode configuration to maintain the ultra-high vacuum (1 nanoTorr). This will provide a magnet-less ionization
and pumping solution at ultra-high vacuum with relatively low voltage (<500 V), potentially enabling atomic microsystems and miniaturized mass spectrometers.
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