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Motivation o With Zero Reflection loads:
Acoustic power transfer is an alternative to inductive wireless v Acoustic impedance mismatch is zero = No reflections
power transfer with some advantages, for example: v" No standing wave is created between emitter and receiver
o Free choice of transmission frequency v' Energy transmission is distance independent
o Larger transmission distances = The receiver efficiency is not maximized

o Can travel through metallic walls | -
o With Power Maximization loads:

v’ Efficiency is maximum—-> more power for the devices
= Acoustic mismatch - Reflections + Standing-waves

= Standing-waves lead to pressure peaks - dangerous
= Energy transmission could depend on the distance

Fundamentals of acoustic power receivers

d Goal: Maximize the power at the load W, to power
Implants or sensors wirelessly
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