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lntrOdUCt|On [t can also be observed from Fig. 2 that, the amplitude of BCG pulses is not
constant. This is mainly because of the modulation of respiration. A more obvious

result is presented in Fig. 3; the respiration information such as rate and magnitude can
be derived from the BCG waveforms.

This poster reports the initial study of non-contact home health monitoring based
on custom-designed low-cost ultrasensitive accelerometers. These sensors were
developed based on a unique cascaded asymmetric-gapped cantilever structure and Inhale Inhale Inhale Inhale
achieved a resolution orders of magnitude better than those in smart phones and other exhale exhale exhale |
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The ultra-sensitive accelerometer is based on an asymmetric-gapped cantilever
structure, as schematically shown in Fig. 1 (a). The top beam formed by a piezoelectric ()
sensing layer is separated from the bottom mechanical beam by a gap, which can
significantly increase the sensitivity compared with the traditional accelerometer with
same dimensions.
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Fig. 3 Modulation of BCG signal by respiration

3D BCG

Piezoelectric layer Piezoelectric layer

Il)m = h/2 * ‘
Proof mass I ______ / Proof mass
it [t is feasible to extract posture signatures from two main groups of 3-D BCG
vesimliheely  Mentulglans (Z) parameters: (1)the morphology, amplitude change of individual components; (2)phase
| and amplitude ratio among 3 BCG components.
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Fig. 1 (a) structure of accelerometer based on asymmetric-gapped cantilever; (b) structure of _D_WXJ\/\WWVW E N A VAVA VS A VAN -mm/\/WM\/V\/VW

a conventional accelerometer; (c) decomposition of the bending of asymmetric-gapped sl | 015 | ot S
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The deflection of the asymmetric-gapped cantilever under acceleration can be Fig. 3 3-D BCG of a healthy volunteer in three different sleeping postures (Voltage-time plot; x
decomposed into rotational and translational bending as shown in Fig. 1 (c). What is and z components are shifted vertically for clarity).

effective in generating output voltage is only the energy stored in the top sensing layer
in the form of normal strain; therefore, in order to get optimal energy efficiency, a
careful designing in the beam structure is needed. C h al I en g es
BCG ReCO rd | ng A commonly encountered issue in real world is the multi-occupancy issue, i.e., the
accelerometer will record BCG signals from both or all occupants, if two or more

subjects are present simultaneously. Separation of individual signals is a classic but

cantilever; (d) an ultrasensitive accelerometer in comparison with an iPhone 4 smart phone.

The newly developed sensor has been demonstrated for detecting

. . . challenging problem.
Ballisocardiogram (BCG) on beds. The sensor was conveniently attached to the front SIS P
frame of a bed in order to measures BCG in x direction, i.e., the head-to-toe direction. A ' G 4
group of recordings is shown in Fig. 2 (all presented data are bandpass filtered from , / S;t;:)?iooctcuepam
0.2Hz to 20Hz).
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The environmental background noise is also a concern; in some buildings, such as
Time {5@:] hospitals, the environment vibration could overwhelm the BCG signal.
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Fig. 2 (a) Enlarged view of BCG pulses; (b) large spikes caused by body movement. R efe re n CeS
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