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Fig. 3. NUS-COTCM Controller 
(C1)

Fig. 4. Analog Constant-On-Time 
Current-Mode Controller (C2)

Fig. 5.  Uniformly Sampled Digital Constant- 
On-Time Current-Mode Controller (C3)

Fig. 6.  Digital Fixed-Frequency Valley-
Current-Mode Controller (C4)
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Fig 10. Voltage loop small signal step response (zoom out) Fig 11. Voltage loop small signal step response (zoom in) Fig 12. Frequency loop step response
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• With the relentless pursuit for more powerful communications 
and microprocessors, the demand for VRMs that are faster, 
more accurate, and more flexible is inescapable. 

Discrete Event Space Modeling:

Control Architecture:

• The proposed control method includes three control loops (Fig 2).
Inner very fast analog current loop: always settles in one cycle. 

Outer slow digital frequency loop: controlled on-time to achieve 
fixed switching frequency.
A fast digital voltage loop: with event-driven(ED) controller.

• The corresponding small signal step-up-reference transient response in 
Fig. 10 and Fig. 11 settles in approximately 15 cycles. 

• The rise time is about 60 µs and settling time about 150 µs, which is fast 
for a converter with a steady-state switching frequency of 100 kHz. 

• The transient disturbance of the frequency loop with a 60 kHz reference 
is shown in Fig. 12. The loop slowly changes the on time towards a 
fixed steady-state frequency. 

• In comparison, the controllers are designed to achieve the fastest step 
response with similar overshoot. 

• C2 :  slow due to the anti-aliasing filter in the feedback loop, which is 
designed to attenuate the lowest switching frequency ripple. 

• C3: aliasing of output voltage ripple (Fig. 5). Sampling frequency should 
be set much higher or much lower than the switching frequency

• C4: slope compensation required for D<0.5 operation[14]. Inner loop 
has a finite settling which degrades the response.

The small-signal event space model is derived as (1) and the model’s z-
domain expression is shown in (2). 
Compared to the single pole system in a peak-current-mode buck 
model [12], the discrete event-space buck model possibly has a non-
minimum-phase zero, albeit far away from the pertinent dynamics. 
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• This paper introduces a new method for controlling Voltage 
Regulator Modules (VRMs) that potentially offers the fastest 
closed-loop transient response in comparison to existing methods.

• We present a new perspective in sampling where the sampling 
events are kept in phase with the switching events, which are in 
general non-periodic. 

• Constant-on-time buck：light-load efficiency performance and in 
current mode, fast transient response. 

• Digital controllers：control flexibility (e.g. nonlinear control), 
lower quiescent power, and robustness to component variations.

• Event synchronization: absence of intermodulation effects, very 
relaxed anti-aliasing filter, opportunity to avoid switching 
transients
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• Some criteria for the choice of
VRM controllers include fast
response, straightforward control
loop design, flexibility, low-
complexity hardware, input
disturbance rejection, and fast
current-limiting [10].

The sampling action of the output voltage V[n] is right before the turn-
off transient. I[n] the valley value of inductor current are not from the 
same physical time as V[n], but in two discrete sequences that intersect 
each other.
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Fig. 1. Timing Diagram of  UNS-
COTCM Buck

Fig. 2.Three Loops Control Structure

Fig.7 Schematic for NUS-COTCOM buck Fig.8 Prototype of NUS-COTCOM buck

Fig. 9.1 Control Flow 1

Fig. 9.2 Control Flow 2

Table. 1. Comparison of VRM Controllers

Fig. 0. VRM Examples

• Control algorithms are implemented by 
DSP and control flows are shown in 
Figure 9.

• Two event-driven controllers [13] 
for the voltage loop compensation 
are introduced; ED accumulators 
shown in (3) and ED proportional-
plus-accumulators shown in (4). 


